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The optimal path across barriers 

Ulf Larsen 
Niels Bohr Institute, Copenhagen University, Orsted Laboratory, Universitetsparken 5, 
DK2100 Copenhagen 0, Denmark 

Received 22 Aptil 1992 

Abstract. In activated stochastic processes-such as diffusion in a condensed medium, 
reaction kinetics, the evolution of the genetic constitution of,a population, or the motion 
of the index cases in a pandemi-there are baniers separating initial and final states. This 
work investigates the nature of the optimal path between states, such as the path followed 
by the quickest diffusers, and.the.timescale associated with i(; i.e. the time required to 
establish communication-and the manner in which that communication takes place. 

The optimal path is a property of a stochastic matrix defining transition rates in t e rm 
of the Pauli-Kolmogorov master equation. The path can therefore be computed. as shown 
in a numerical case study. 

In the continuum limit, optimizing a timescale expressed in terms of integrals produces 
a new category of variational problems. This generalization introduces non-local quantities, 
and the equations of motion become integro-differential. A new type of mechanics emer- 
g-with both efficient and 6nal causes-a kinematics/dyna,mics with unusual implica- 
tions. The motion of a fictitious 'tracer' particle, which serves to trace out the optimal path, 
can be formulated as a Newtonian dynamics in.the same fields as~influence the actual 
difiusers. That is, 'one can have Newton's second law with real efficient causes. 

But the tracer's charge, regulating its coupling to the extemal field, varies along the 
path, in a manner which requires complete 'knowledge' of the full path. "his teleological 
aspect is a consequence of the way in which the problem is defined-in terms of boundary 
conditions at the beginning and at the end of the path. 

Acomputer-assisted search for optimal paths shows a complicitedoptimization problem 
with false minima. Results corresponding to a low and a high temperature indicate that: 

(i) Optimalpathstendto cross banierscldseto raddlepoints, and withnegativecharge. 
(ii) At a lower temperahre the path comes closer to the exact saddle-point. 
(iii) There is a tendency to mount a slope by a steepest-descent path, and then to 

traverse the slope. 
(iv) When traversing, the tracer chooses a level aboutkT below the saddlepoint energy. 

These findings agree with the results of the variational analysis. Some confirm general 
expectations, but most of the details are perhaps rather surprising. 

1. Introduction 

Many stochastic processes consist in diffusive motion from one location to another-in 
some appropriately defined 'state space'. 

For instance, in reaction kinetics the system may move between states of different 
composition (e.g. Wolynes 1989). Or, in a condensed medium a mobile entity may 
diffuse, more or less freely, from one place to another (e.g. Stoneham 1989). The 
genetic constitution of a population may evolve stochastically in a d i p i v e  manner 
(e.g. K a u h a n n  1989a, b, Perelson and Kaufbnann 1991). 

' 1;~ 
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In activated processes there are barriers separating initial and final states. For this 
reason one is interested in the nature ofthe optimalpath, such as the reaction coordinate, 
and in the timescale associated with it?. 

I have therefore (Larsen 1987) defined this category of problem as the optimization 
of a certain stochastic timescale: In a typical realization of the stochastic process, which 
path is followed by the quickest diflusers? 

In the presence of barriers-generally understood-timescales can become exceed- 
ingly long, and also extremely sensitive to parameter values. The most well known 
case being, of course, the law of thermal activation due to Arrhenius, where a slight 
change in temperature can alter timescales by orders of magnitude (Arrhenius 1889, 
1899, Kramers 1940, Brinkman 1956, Larsen 1983a, b). Changing the temperature alters 
the optimal path configuration as well (an example of this is shown in the case-study 
described in section 5). Other changes of circumstance may have catalytic effects, 
modifying the bamer structure. 

So the prospects for direct Monte Carlo style simulation are perhaps not too 
promising when the decisive events are, by the nature of things, highly exceptional. 

In the present timescale optimization the optimal path is a property of a stochastic 
matrix defining the transition rates in the model (section 2). The path can therefore 
be computed-at least in principle. 

1.1. Tracks andpaths in diesion 

Consider a large number of repeated performances of the stochastic process, in which 
a ‘diffuser’ starts at a certain location a and moves according to certain transition 
rates, at random, between different locations, until it ends at a given location b. 

Each realization of the process defines a track, from a to b. The set of locations 
visited (once, twice, etc.. .) by the track constitutes a pathS. 

In a sufiiciently large ensemble every path contains many different tracks. And, of 
course, every conceivable track is assigned to a path. If one imagines a diilkser 
‘deviating’ from some path, then the new track belongs to another path which is also 
given consideration during the optimization (see figure 1). 

Transition rates are k e d .  So each path defines its ownstochastic subprocess-the 
one which would be followed if all other transition rates, into and out of the path, 
were set to zero. Therefore each path can be evaluated as if it were a one-dimensional 
stochastic process; and the timescale for a path-process will apply to the typical track 
on that path. 

The idea-to be described in more detail in section 2 4 s  to consider transition 
probabilities per unit time into a variety of ‘channels’, some of which theoretically 
become closed upon path formation. The rate of proceeding to sites situated along the 
path remains unchanged. But the ‘path-diffusers’ constitute the sub-ensemble of 
diffusers which remain stationary at a given site, before proceeding (or backtracking) 
along the chosen path, whereas among all diffusers some move off into non-path 
directions. Within each path-ensemble no diffiser is iduenced by closed channels, 
since the path-tracks have never used those options. In particular, their timescales 
depend exclusively on the transition rates of the open channels along the path. 

t For example, in a pandemic it seems imponant to correctly forecast which path would be traced by the 
so-called index cases, perhaps on the basis of model calculations. 
t This terminology agrees closely with standard English. What in physics often goes by the name ‘path‘ is 
actually B ‘track‘. Here the distinction is necessary. 
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For instance, to estimate which path is most likely to include the track of the typical 
first-arrival at b, one must search for the path from a to b with the shortest timescale. 
That timescale is the typical shortest transit time?. 

All paths with loops can be disregarded. For, in a Markovian stochastic process 
conditions revert to what they were once the d i t h e r  resturns to the straight path. The 
full ensemble contains tracks similar to the looping ones, except for the missing loops. 
And those diffusers wasted no time looping. 

Two paths are almost equally fast when they differ only in certain areas with little 
influence on the overall timescale. But at the col of a harrier the tracing can be extremely 
significant. So optimization gives a unique path, apart from symmetries that may lead 
to networking, i.e. alternative paths being equally fast. 

1.2. Continuum limit yields new variational problem 

The difisive stochastic processes are defined in terms of the Pauli-Kolmogorov master 
equation, to be used in the numerical case study (section 5). The timescale andysis- 
under the proper circumstances-admits a continuum libnit, in which the optimal path 
is found by optimizing a timescale quantity expressed in terms of integrals (Larsen 
1983b). 

This appears to produce a new category of variational problems-an analogy to 
Fermat’s principle of least time (de Fermat 1657). 

Traditional variational problems give rise to the well known Euler differential 
equations (e.g. Courant and Hilbert 1953). In the present case, as will be shown in 
section 3, one obtains integro-differential equations. 

1.3. New type of mechanics emerges-with both eficient andfinal causes 

The pragmatic background to this development was described above. In addition, it 
tums out that the present generalized variational problem defines a kinematics/ 
dynamics with unusual implications. I find these interesting enough that they should 
be mentioned in connection with the physical aspects from which they arise. But only 
concepts with a precise counterpart in the mathematical formulation are being discussed 
here. 

Consider the motion of a fictitious ‘tracer’ particle, which serves~to trace out the 
optimal path. One can formulate this motion as a Newtonian dynamics in the samefields 
as those which influence the actual diffusers. That is, one can have Newton’s second law 
(section 4), with real e5cient causes. 

But there are-necessarily-strange variations on this classical theme. One is that 
the’tracer behaws in an ‘intelligent’ fashion: the tracer’s charge, regulating its coupling 
to the extemal field, varies along the path. And it varies in a manner which requires 
complete ‘knowledge’ of the full path. 

A final cause is normally expected only of consciously determined trave1lers:The 
 present^ teleological aspect is a consequence of the way in which the problem is 
defined-in terms of boundary conditions at the beginning and at the end of the path+. 

t A so-called first-passage situation, in which b is absorbing (i.e. no outgoing transitions are allowed). This 
widely discussed topic is a special case of the present theory. 
I In this way the situation is similar to the one behind the anthropic cosmological principle (Barrow and 
Tipler 1986). Earlier work on final boundary conditions includes SchrGdinger (1931). Aharonov, Bergmann 
and Lebowitz (1964), Cocke (1967), Wheeler (1979), and the present idea (Larsen 1987). 
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In stochastic terms appropriate to the original problem of diffusion there is selection, 
whether artificial or  natural. This predetermination to end up (quickly) at a certain 
final destination reflects back on the path-tracer’s dynamics while it is travelling. The 
tracer’s charge is changing in such a way as to serve the ‘purpose’ of getting the tracer 
to where it is supposed to tum up-whatever real fields may intewene while it is 
underway. 

For instance, suppose a path has to cross an energy-barrier, which repels the 
diEusing entities in terms of a Newtonian force. The tracer negotiates the barrier by 
changing the sign of its charge at a certain stage. It ‘decides’ to mount the barrier in 
spite of the otherwise opposing field, ‘in order to’ amve at the other side. Once over 
the top, the tracer’s charge eventually reverts to normal, the barrier force bringing it 
down the opposite slope to where it is supposed to go. The charge must he very 
carefully adjusted all the way along such a tracing trek, in order to achieve its end. 
But only ‘natural’ forces act. 

2. Background 

2.1. Discrete stochastic process in continuous time-the master equation 

Suppose the set { a }  labels the states of a system, and that there is a matrix of transition 
rates L={Lab}, with 

Here Lab is the probability per unit time for the jump b + a. The sum-constraint in (1) 
means that the matrix k is infinitesimally stochastic; i.e. the transitions conserve the 
probability normalization Ea W, = 1 in the associated Pauli-Kolmogorou masferequation 

where { Wa} are occupationprohabilites for the states {a}. This is a Markovian process 
in continuous time, and-by the nature of our project-it should be assumed that k 
is time-independent. 

A path {a} is defined as an ordered sequence of n elements drawn arbitrarily from 
{a}, starting and ending at definite states a and b. With the path {a} one is to associate 
transition rates {PeP} drawn in this way from L: (i) P,,l, = Lo131e and (ii) normalize, 
awording to (l), by choosing P,, = -Lm+lm -Le-la; except at the ends, where Pll  = 
(-PZ1 and P.. = -Pn-,”. , 

For the chosen path {a} of n states one then has a tri-diagonal rate ia t r ix  P = {Pap}.  
This path;Ipatrix defines timescalest which pertain to the selected path ‘in k’. The 
physical motivation being that, in;7~well defined way, the optimal path characterizes 
the matrix L. 

.> Given P one may create an a h i a r y  master equation 

7 In this work 1 assume detailed balance, so these timerules are equal IO the reciprocsls of n - 1 real positive 
eigenvalues of -P, a fcw such sundsrd results are reviewed in Larscn (1984a). 
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for a fictitious ‘path-system’. But the occupation probabilities {w-}  bear no direct 
relation to the actual ones {W.}. The timescale of P determines the approach to 
‘path-equilibrium’. 

But it is the path timescales, as such, which are of interest, and how they characterize 
the original R. Not global equilibrium of (2), nor the time it might take for the process 
(1) to establish it. The aim is to investigate the time required to establish communication 
between the states a and b-and the manner in which that specific communication 
takes place. 

Ergodic theory, under such conditions on P as path connectedness, proves the 
existence of a path ‘equilibrium state’ {w:} for ( 3 ) .  But it has nothing to say about 
how long it takes to reach that equilibrium (e.g. Seneta 1973). To know that auration, 
of course, is a prerequisite for the present optimization project. 

Some time ago I found a general expression for an upper bound O n  the timescales 
of P (Larsen 1984a,b). This allows to formulate ‘optimal network kinetics’ for a 
given R: 

The optimal network, connecting selected states a and b, for a given rate matrix U 
consists in one or more paths {a} in { a }  which minimize T, where T is a certain 
path-function of U. 

Rate matrices, such as U or P, have at least one zero eigenvalue (due to the sum 
constraint shown in (1) and (3)). That prevents standard matrix theorems (cf Marcus 
and Minc 1964) from giving precise information about the magnitude of the next-to- 
smallest eigenvalue. The dominant timescale is controlled by this eigenvalue-the 
largest~time-quantity defined by U or P. What matters is, now,one has the finite upper 
bound 7 on that timescale. 

Information about some average timescale is not specific enough for the present 
purpose: the average may not be significantly influenced by the largest member when 
n~is  large. In the absence of an explicit general expression for the relevant eigenvalue, 
to optimize with 7-the upper bound-is a feasible approacht. 

From the mathematical point~of view it is the structure of 7 which is interesting. 

2.2. Classical diffusion in the continuum limit 

In the classical limit (details in Larsen 1983b) it is assumed that { a }  becomes a 
d-dimensional Euclidean manifold {x}. A path {a} becomes a curve {x(s)}, with 
parameter s, connecting points Q = x(sl) and b = x(s2). Under the influence of a force 
derivable from a potential energy U ( x ) ,  diffusive motion is assumed.to be due to 
contact with an energy-reservoir at a temperature TS. 

The relevant timescale is then given by 

?There is a very considerable literature which handles bamer problems in terms of specific models, 
approximations, and potential-far too extensive to be reviewed here. What is required for path optimization 
is an exact expression which holds for arbitrary potentials. 
t But the object system of diffilsing entities is not in equilibrium, so it has no T. The temperature parameter 
s w e s  exclusively to characterize the transition probabilities in U which result from contact with the energy 
reservoir. The Boltzmann-Gibbs exponentials which occur in the following all come from U-via the detailed 
balance relation (cf footnote 13 or Larsen 1984a). 
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(5) 

Here the ‘speed‘ is U = ( U .  a)’”, U = dx(s)/ds, where s is the ‘time-parameter’. Fur- 
thermore 

w =  e-U(rVkT 

H-= dtuW 

H+ = [,I‘ dt  vW 

5: 
H = H-+ If+ = j9: dt uW 

The parameter t enters via x and U 
The minimizing curve x(s) connecting given positions x(sJ and x(sJ in {x} is the 

optimal path associated with the energy U ( x )  at temperature T. It may be said that 
here the function U ( x )  represents the matrix L. In this special case the velocity 
dependence is rather trivial. But I keep a general a-dependence in the variational 
situation suggested by this example. 

3. Variational procedure 

3.1. General formulation 

Consider the problem to find the extrema1 paths x(s) of the path functional 

T= 1: d s f  (s, x, a, P, q, r )  

with endpoints fixed at x,=x(s,) and at x2=x(s2). Letting g=g(t,x, a)  be another 
function of the path, in (6) 

p = j s  d t g  r = p  + q = Jsr dt  g. 
8, 

(7) 

It is convenient to keep r as a separate variable, and to abstain from the straightforward 
generalization to three different g functions. 

Without the global quantities p ,  q, and r, one has a standard variational problem. 
Global dependences do not occur in dynamics, where all path dependence is in the 
local variables x and a. 

This local nature of the classical variational Formulations may be one reason that 
global optimization, as implied by variational principles, is not currently seen as a 
physically meaningful alternative to local dynamics. In design problems the viewpoint 
may be otherwise. But here one seems to be faced with a fundamentally global situation, 
as will become evident in the following. 

Denote first derivatives (gradient vectors where x and a are concerned) as follows 

and analogously for the derivatives of g. 
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Consider variations x a x +  Sx. So 

ST = 1: ds Sx. Q + higher order terms. 

One has an extremal (the fundamental lemma) if 

Q = 0. 

Expanding f to first order 

Sf = 8x.L + 8u. f .  + S p f ,  + Sqf, + Srf,. 

Here, using So F d Sx/ds, 

3255 

The first two terms in (11) give the conventional Euler equation. The next two terms 
have double integrals which we rearrange according to 

J S 2 &  1' dt. .  .=I" dt 1: ds. .  . 

thus 

and 1;ds 1; dt.. .=j:dt js: ds. .  . 
51 =I SI 

and likewise for the S q  integral. The Sr integral is straightforward. 
The 'equation of motion' thus becomes 

where 

 this is, of course, a necessary-but not sufficient-condition for a minimal T. Sufficient 
conditions are beyond the scope of 'the present investigation. Inspection is probably 
more efficient, in connection with numerical analysis in analogous lattice models (cf 
section 5). 
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Equation (16) is the integro-differential equation announced in the introduction. 
The quantity M is in general expressed in terms of multiple integrals, via f,, &, and 
f,. The following specialization demonstrates this extension explicitlyi. 

3.2. Special case: the geometric path 

In (4) and (5) the functions f and g depend on U only in terms of the path-geometry 
factor v = ( I ) .  v ) ~ " ,  that is 

Since 

av U .I 

av U 
-=-Et 

is the unit vector tangential to the path one gets 

L = Oh, & = h i  

g.Y = 05; go= ki  (19) 

f, = Oh, & = vh, f, = uh,. 
Define transverse components, for instance the transverse acceleration 

dv dZx a'= a - ( i - a ) i  a=-=- 
dt  dt2' 

Then 

In these terms 

t+h-= --+ o-h,+vk(h,-h,) 
_=_ df. d h ,  d i  [;; 
ds ds ds 

The last term in (16) is, by (19), 

&(f, -&I = M h p  
and cancels the third term in (23). 

f' It might be expected that a generalization of the present nature had been considered before. As far as I 
am aware, this is not the case. With one remarkable exception: In 'Methodur inveniendi.. .'-in Chapter 
111-Euler considers a situation rather like the present one. The equation of motion (16) can be obtained 
by a generalization of his Proposition I11 (Euler 1744). It appears that no one found any use for the idea, 
until now, so that it has been ignored. 
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Now define transverse components 

h: h, - (i. A,) i k: = 5, - (i. 5,); 
Then one gets 

Q = v(h>+ Mk:) - ( h  t Mk)  &- (:+ M g ) i  
U 

Now separate transverse and longitudinal, components in Q = 0: 

($+M$) = O  

( h  + M k ) d  = uz(h:+ Mk:). (28) 
These are the ‘equations of motion’ under the conditions arranged in (18). 

If, in addition, h and k do not depend explicitly on s-as in the case-study of the 
next section-then (27) is an identity. There remains no inherent time-dependence, 
and one is free to choose the ‘natural parametrization’: U = 1, i.e. independent of s. 
One gets an essentially geometric problem: to find the optimal path as a geometrically 
defined curve. 

Yet one may imagine a ‘tracer moving in time s’, according to the equation of 
motion (28), which determines the transverse acceleration at any point. The longitudinal 
speed is arbitrary. In the natural parametrization the tracer’s speed i s  constant U = 1, 
and the longitudinal acceleration is zero. Any other motion~in the. arbitrary ‘time’ s 
has the factor U’ in (28) as compensation, so that the entire geometric path remains 
the same. . .  . ,  

- , .  
4. Case study: the optimal path in thermal diffusion 

4.1. Tracer kinematics and dynamics 

In this model, according to (4) and (5),  

The potential energy U ( x )  defines the mechanical force 

Then 

Define the charge, 8, by 
M k - h  

& =- 
M k +  h‘ 

From (28) one then gets the equation of motion 

kT maL = EFL m = -  
v2 ’ 
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Using p + q = r one can write 

p =  Is: dt UW q = I s * d t  uW r = dt uW 
(34) 

Define 

(35) 
rW2M I:, dtu(p2/ W)+J:’ dt u(q2/ W )  _- U 

kT’ 
=$In - - I 

-2h 
P4 Pqr 

Then 

&=tanhX l e l s l .  (36) 
The equation of motion (33)-together with the appropriate initial conditions- 

describes how the tracer traces the extrema1 path. The charge E regulates the tracer’s 
coupling to the external force field F, which is the same field as the one experienced 
by the ensemble of dihsing entities. 

Consider first the option which corresponds to the natural parametrization: v = c = 
constant. The acceleration is purely transversal: an = 0. 

This dynamics is reminiscent of ultra-relativistic motion in an inertial frame at rest 
with respect to the static potential energy U(r). But in that case m would be the 
‘relativistic mass’ E/c2, where E varies along the path-essentially as the kinetic energy 
would: dE/dt  = EF-v (Mprller 1952). 

In the present case E = kT is fixed, no matter what E is and no matter where the 
tracer is in the field F. So the transversality does not imply relativistic motion. 

Yet it seems suggestive that E = kT, as if there was a way to exchange kinetic energy 
(the reservoir at TI) just so that throughout the tracer’s path changes in the potential 
energy get compensated, making dE/dt = O t .  

4.2. Exotic mechanics 

Since s is an arbitrary parametrization, it is more interesting to give up the constancy 
of U, and the attendant transversality. Using t as a parameter, let us now request 
Newton’s second law 

p = mu. dp -= EF 
dt  (37) 

Here p is the tracer’s momentum, and m is an appropriately variable mass of which 
it is a priori required merely that it depend on U only through the speed U. 

Whereas in special relativity m as a fnnction of U is determined by the requirement 
that Newton’s law hold in all inertial frames-of-reference, here we have another con- 
straint: the transverse equation of motion (33). It will be shown that this implies 

(38) 
kT mall E -& m =- 
U 2  

in agreement with the second part in (33). 

t For the real, diftusing entities the lack of energy conservation k due to exchanges with the energy 
reservoi+without which barriers cannot be crossed. 
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Consequently ~ ~ 

ma = E ( F ~ - F " ) .  (39) 

The vector in the right-hand side is the force EF mirror inverted in the plane normal 
to the tangent of the orbit?. 

To prove these statements: 

dv 
-= i . a  
dt  

din m dv 
-= dP ma+mv-- -ma-2m- i =ma-zm( i .a )  i 
dt  d t  dt 

= m(a'- all) = E ( F ~ + F I I )  = EF. 

The momentum decreases as v increases 

(40) 
kT A p=mv=- t p * v =  kT 
v 

due to 'mass loss'. The path radius-of-curvature is regulated by the charge E :  

v2 kT kT p = ; ; i = I , I F I > _ F  F=IFI. 

From (38) one has 

. ~ ~. du d U  
dt a t  

mu-= ma." = -&FII.v= -&F.v= E- 

which gives 

where e is some reference speed. So, for constant E  one^ has a constant of the motion 

(43) 
C 

v 
kT In-+&U=constant. 

For instance, if E = 1 the speed increases uphill (and the momentum decreases) 

for E = 1. (44) = e(U-U,)/kT 

This is exotic. 

4.2. The tracer adjusts its charge 

The tracer of an optimal path is_ a determined traveller, who uses negative values of 
the charge E when needed to cross barriers. The expression for E given in (35) and 
(36) involves a full view of the entire path-beforehand. Besides the conventional 
e5cient cause F, one could say that, via the intrinsic quantity E the tracer dynamics 
incorporates a final cause as well. 

7 Acceleration which is not collinear with the force is, of course, typical of variablemass dynamic% In 
special relatiyity E/c'a=F-U (F.u) /c2  (Mflller 1952). But the present form (39) looks unique. 



3260 U Larsen 

For example, consider a path which starts and ends at two local energy minima: 
for s s, and s = s, 

U(r(s)) = U,+;u;(s -s$ 

U(+)) = U,+iU;(s -s2)2 

for U; > 0 

for U; > 0 

where U,> U,, for dehiteness. At some s=s, there ex is t s i t  is assumed-a single 
maximum in U, considered as a function of s along the path-i.e. a barrier: for s = s, 

U(x(s))  = U,+tU~(s-s,)Z for U&<Oand U,> U,. 
For simplicity, use U = constant = 1.~ Laplace's method gives, asymptotically as p = 
l /kTaa ,  

' -pun- 

q ( s )  - $ e - o U a m c c  p ( s ) .  
Using I = p + q, one gets in an analogus way 

(45) 
p(s)--Ie 

The decisive quantity is the barrier height, as seen from the side where the barrier is 
lowestt. Consequently the optimal path will pass through-or at least very near to-a 
saddle point of the energy surface (as the path shown in figures 2-3). Reaction 

a 

b 

Figure 1. Some tracks and a path communicating between two states Q and b on a square 
lattice with nearest-neighbour selection d e s  for transitions. Tracks belonging to a path 
(shaded) may backtrack and overlap, as'indicated at (1) and (4). Tracks belonging to 
dserent paths may overlap partly, as at (5 ) .  Every track belongs to some path. Optimal 
paths, and theirtracks, havenoloops,asat (2) and (3),foraMarkovprocess has no memory. 

t The reason being that, in order to establish a non-directional path-equilibrium the decisive processes will 
be those which increase the population in the low valley by transfering entities from the high valley. One 
can also handle directional processes by the present methods. In that case the relevant activation-energy 
will be the barrier height as seen in the direction chosen. Such directed paths turn out rather similar to the 
present ones, but with interesting variations. 
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Figure 2. Optimal paths for thermal diffusion on the energy surface to be studied in section 
5. The paths cross the barrier close to the saddle-points, and avoid the energy minimum. 

coordinates are commonly assumed to do just this, so (46) may be said to prove a 
prototype Arrhenius law concerning the energy and temperature dependence of r. No 
form of ‘quasi-equilibrium transition state’ was assumed to exist near the barrier saddle 
point. The activation energy is U, - U,. 

To see the variation of E, first note that E = 1 at both s = sI and s = s2, since either 
p = 0 or q = 0. At the highest point, s = s, : 

Thus 

As /3+m 

&+--l atbarriertop. 1 (48) 

So there is a point on either slope where ,y = 0 implies E = 0. In fact, as will become 
evident in the following section, there are generally long stretches where the tracer moues 
with E=O.  Accordng to (41), one expects little curvature of the path in such places. 
The tracer ignores the force field F. To cross the bamer-once it has arrived in its 
vicinity-the tracer for a while turns its charge negative, using the force field to gain 
the necessary lift. 

4.3. kxample: unhindered diffi ion 

One can check a few things by considering U ( x )  =constant, i.e. F = 0. The optimal 
path is a straight line from x, to x,. With W =  1 one finds (U = 1) 

(49) E = 1 + 6 ~ ( ~ - 1 )  s, = 0 and s,,= 1. 
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Here ~ = O a t s = f ( l * l / ~ ) , ~ = 1 a t s = O a n d 1 , a n d ~ = - ~ a t s = ~ . T h i s r e l i c v a r i a t i o n  
of E is consistent with the low temperature pattern deduced above. 

5. Lattice model 

5.1. Discrete formulation 

A physically correct discrete lattice version is available from the outset-the original 
quantized model-so it only remains to devise a sensible expression for the charge E. 

It will be modelled after T. 
But a lattice model necessarily breaks the isotropy of the continuous manifold {x}, 

depending on the selection rules chosen in defining the transition rate matrix L. The 
present two-dimensional square lattice is ‘rather anisotropic’. Yet the features of interest 
are perfectly evident?. 

Figure 2 and 3 show the energy surface 

50 
{x} = {(x, y )  Euclidean} (50) 

which has a barrier along x = y with a local minimum at (x, y )  = (0,O). There are two 
saddle-points, at (2,  -2) and (-2,Z): 

2+x=+yz U(X, Y )  =xY - 

Lattice points are placed at 

I a } = I ( x , ~ ) = ( ~ n ~ , ~ n , ) l n , ,  n,=O, *I,%.. d. 

Figore 3. Optimal paths for the energy surface (50f, as listed in table 1. Full lines: kT=f; 
dotted line: k T = y .  As in figure 2, a lattice (of spacing 0.1) is superposed on the U(& y )  
whose contour map is shown. Note that there is no barrier between a and e, but here too 
traversing the slopes of the central pit is required. 

. 
t Isotropy can be improved by including transitions between next-nearest neighbours, etc. Presently, at least, 
such complications would obscure the essential points. 
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Transitions are restricted to nearest neighbours in the x- and y-directions. Rates-when 
not zer-are equal to standard Monte Carlo rates, with detailed balance relative to 
thermal equilibrium?, i.e. 

1 if U, S U, L.s=[eru~-u.wkr if U, > U,. 
On the path {a} define 

wi =e-UJkT 

e 

z =  2 w; z(1, a) = 1- w; 
P = l  5=, 

Then the timescale to minimize is 
1 z( l , a )z (a+l ,n)  
z min(wi, W O , + ~ )  T = -  1 

(Larsen 1984a). 
The discrete ‘charge’ is defined like this 

E.. = tanh ,ye 

(51) 

Consider any pair of lattice points, say (0,O) and (nJl0, n,/lO), where n, and ny 
are arbitrary positive integers. A shortest path-in terms of the number of square-lattice 
steps it containsconnecting these points has n, + ny steps. But there are a number 
equal to (n, + $)!In,! n,. ! distinct versions, filling the rectangle defined by the two 
points. In terms of length in such a geometry these paths are degenerate. The lattice 
geometry is not Euclidean. 

The degeneracy ,is not present in terms of T, unless all U(x ,  9)  = 0. Nevertheless, 
there is a certain ‘chain-like’ pliability of the square-lattice paths. This permits a 
path-in varying degrees-to slide down the U(& y )  surface. Thereby such a path can 
gain an advantage that would be o&et by the disadvantage of a longer length in the 
continuum. The ‘taxicab-length’ is the same (cf Krause 1975). 

For instance., when crossing the barrier in (50) the path tends to slide down towards 
the saddle-points a bit more than it would in the continuum (see figures 2 and 3). 
Generally, the~lattice paths tend to be more straight, and to tum more sharply where 
the situation allows it. One has to be aware of this when’interpreting the;following 
results; but the distortions relative to the continuum ideal are not too disturbing. 

5.2: General observations on optimal difision paths 

A reasonably elaborate computer-assisted search for minimal T resulted in the paths 
shown in figure 3. In all likelihood one has to deal with a complicated optimization 
problem-where an automatic search using a greedy algorithm gets stuck in false 
minima of 7. 

t Recall that detailed bolance implies relations Lobk=Lhww for all pairs 4 b and some set (e} of 
non-negative numbers, which become equilibrium occupations provided one waits long enough (which may 
be a very long time indeed). The rates of Metropolis et a1 (1953) can be shown to be the most efficient ones 
aiming towards this goal (cf Larsen 1987). A thermal situation corresponds to such a rate matrix L that 
detailed balance is satisfied with canonical Boltzmann-Gibbs factors: WEKexp(- U./kT). 
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The results are shown in table l,, corresponding to a low and a high temperature 
(i.e. kT =? is higher than the barrier at seen from a) .  Here are some essential features 
shared by lattice and continuum models: 

(i) Minimal paths tend to cross barriers close to saddle-points, and with negative 
charge E.  

(ii) At a lower temperature the path comes closer to the exact saddle-point. 
In thermal diffusion the energy kT is readily available. If there is an advantage in it, 
the tracer can afford to pass the barrier about kT higher in energy than the highest 
saddle-point. This accounts for (ii). 

Another way to understand the effect (ii) is in terms of the local field to obtain a 
suitably small path radius-of-curvature p (cf (41)) the tracer must pass where IF'[ is 
sufficiently large compared to kT (E - -1 here). That is, further away from the exact 
saddle-point for the larger kT. The tracer can only pass more or less directly through 
a saddle-point if there is to be essentially no curvature of the path there. As in a-c at 
(2,-2), or in a-b at (-2,2) and kT=$ 

(iii) There is a tendency to mount a slope by a steepest-descent path, and then to 
traverse the slope. 
This is especially evident in the a-t0-(2, -2) section, where a-b ascends to the --9 
energy level directly, and then traverses despite the length penalty involved. 

More intriguing is the bend close to c in the a-e. Since E = 1 near e, this must be 
the only way to achieve the correct overall direction towards a?. 

(iv) The steep slopes of the mid-barrier minimum are trauersed. 
This observation seems important. The tracer cahnot venture down into the energy 
minimum, because the exit bamer-i.e. (O,O)-to-(-2,2)-is much higher than any 
other barrier. It would cause an enormous delay, compared to what the optimal T of ~ 

the traversing path is. 
If entities start at a, the first ones to arrive at b come directly from a-not from the 

population in the deep minimum (whose members also come from a). Despite the fact 
that, in an eventual equilibrium situation, the minimum at (0,O) may become 
the most heavily populated area. 

A traversing track which circumvents the minimum is nearly as quickly at b as the 
time it takes for another track from Q to end up at the bottom of the (0, 0)-minimum. 
Therefore the first entity to turn up at b will do so surprisingly rapidly. Compared to 
the time it would take for an entity of @e emerging minimum-population around (0,O) 
to get out and to reach b. The first entity to reach b will have been travelling a highly 
exceptional path-one which traverses a very sparsely populated area. 

There is a path altemative to a-b traversing the far side of the pit. Its 7 is only 
marginally larger than the present 7. In a symmetric configuration, say to go between 
(3, -3) and (-4,4), the pathwould bifurcate inside the energy minimum region, causing 
optimal network formation. 

Table 1. Optimal path parameters. 

path kT 7 

a-b 3 16985.906 
, . , .  .,,. ,, ,. ,,,,.. ,.,....... ,,  ,.,. ,,,,.,,,, , ,  ,, ,, , , , ,  , 

2 

( I -E  $ 1212.445 
a-b Y 5063.830 

t The differencesinvalues of rbehveenpaths whichdifferinfheselaUerrespenaresignifieant,butnotmajor. 
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(v) When traversing, the tracer chooses a Ieoel about kTbelow the saddle-point energy. 
The high-temperature path a-b traverses at a deeper level inside the pit than does the 
low-temperature one. 

The transverse force field IFL/ is large. So to get a modest curvature one needs a small 

These features of E are illustrated in the record of { E * }  shown in figure 4. This 
figure shows { E - }  for the path a-6 of k T = i .  At this lower temperature there is better 
relation between the lattice path shape and the quantities { E = } ,  as compared to the 
exact relation between a continuous path and its charge E. Despite the peculiarities of 
the lattice paths, {ea} vanes with good general resemblance to what E would be. 
Smoothing the unavoidable fluctuations demonstrates how the charge is very small 
during both traverses (figure 4). 

(vi) When traversing, the charge e is nearly zero. 

E. 

+'f 

Figure 4. Charge variation along the path a-b at the temperature 5. The charge turns 
negative at the saddle-poinls, and is essmiially zero during the traverses (fluctuations being 
a lattice effect). 

6. Discussion 

As is well known, the conventional Euler-Lagrange variational calculus-when applied 
to problems in dynamics-leads to equations of motion which represent Newton's law. 
According  to^ Hamilton's principle of stationary action, a path which is extrema1 for 
the action integral S = j  dtL(t, x, U), where L is the Lagrangian, is traced by a motion 
which reacts to the local force field as prescribed in dp/dt = ER The charge, E, remains 
constant. 

For this reason-the locality-one tends towards not associating any basic physical 
significance with the global quantity S. It is sufficient-to account for the local influence, 
the efficient cause, in terms of the field E What is more, at least in d = 1, any ordinary 
second-order differential equation, a = +(t, x, U ) ,  is the Euler equation for some 
Lagrangian L(t, x, U )  (Darboux 1894, Bolza 1909). 

When the Lagrangian L depends on t, x, and U, the equations of motion are 
differential equations. The present generalization introduces the non-local quantities 
p, q, and r, and the equations of motion become integro-differential. 

At least in the special cases where the dependence on U is trivial, the equations of 
motion turn out to agree in form with Newton's dp/dt = EF, but now the charge E is 
a varying quantity. Its instantaneous value incorporates a global aspect: the entire 
optimal path must be known in order to compute the value of E. 
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As demonstrated, E regulates the tracer's reaction to the physically real local field, 
F. Both positive and negative values of E are required in order to trace a path across 
a barrier. At certain stages the tracer has to climb against a field that would repel a 
particle with the physical charge E ='1 of the real diffusing entities. 

This situation-unusual for particle dynamics-seems analogous to what may be 
called 'intelligent behaviour'. The knowledge expressed in the variation of E is precisely 
the knowledge acquired by CaIcuZating what the optimal path is. Wlth a map and a 
computer one is capable of planning the sequence of &-values required to perform the 
motion that traces the optimal diffusion path. Besides the efficient cause F, there is 
thus a final cause inherent in E. 
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